2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

Maryland High School Survey

Carroll County

Trend Analysis Report

[^0]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

Maryland High School Survey

Carroll County

Trend Analysis Report

[^1]
Maryland High School Survey

Carroll County

Trend Analysis Report

[^2]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

Maryland High School Survey

Carroll County

Trend Analysis Report

[^3]${ }^{\S}$ Not enough years of data to calculate.

```
2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report
```


[^4]${ }^{8}$ Not enough years of data to calculate.

Maryland High School Survey

Carroll County

Trend Analysis Report

[^5]${ }^{\S}$ Not enough years of data to calculate.

Maryland High School Survey

Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{\S}$ Not enough years of data to calculate.

Maryland High School Survey

Carroll County
Trend Analysis Report

[^6]```
2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
 Maryland High School Survey
 Carroll County
 Trend Analysis Report
```



[^7]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^8]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| Total <br> Alcohol and Other Drug Use |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{llllllllllll}1991 & 1993 & 1995 & 1997 & 1999 & 2001 & 2003 & 2005 & 2007 & 2009 & 2011 & 2013\end{array}$ | 2014 | 2016 | 2018 |  |  |  |
| QN45: Percentage of students who ever used marijuana (one or more times during their life) |  |  |  |  |  |  |
| 29.3 | 27.3 | 28.8 | 27.3 | No linear change | Not available ${ }^{\S}$ | No change |
| QN46: Percentage of students who tried marijuana for the first time before age 13 years |  |  |  |  |  |  |
| 6.1 | 4.2 | 5.0 | 4.9 | No linear change | Not available | No change |
| QN47: Percentage of students who currently used marijuana (one or more times during the 30 days before the survey) |  |  |  |  |  |  |
| 18.2 | 16.4 | 17.9 | 17.3 | No linear change | Not available | No change |
| QN48: Percentage of students who ever used synthetic marijuana (one or more times during their life) |  |  |  |  |  |  |
|  | 9.5 | 6.6 | 5.1 | Decreased, 2014-2018 | Not available | No change |

[^9]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^10]'Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^11]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^12]'Based on t-test analysis, p < 0.05 .
${ }^{8}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^13]
## Maryland High School Survey

## Carroll County

Trend Analysis Report

## Total

## Sexual Behaviors

| 1991 | 1993 | 1995 | 1997 | 1999 | 2001 | 2003 | 2005 | 2007 | 2009 | 2011 | 2013 | 2014 | 2016 | 2018 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

QNSHPARG: Percentage of students who used a shot (such as Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse (to prevent pregnancy, among students who were currently sexually active))

| 3.0 | 3.4 | 1.7 | 2.5 |
| :--- | :--- | :--- | :--- |

QNOTHHPL: Percentage of students who used birth control pills; an IUD (such as Mirena or ParaGard) or
implant (such as Implanon or Nexplanon); or a shot (such as Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse (to prevent pregnancy, among students who were currently sexually active)

| 29.9 | 34.8 | 35.1 | 40.8 |
| :--- | :--- | :--- | :--- |

QNDUALBC: Percentage of students who used both a condom during last sexual intercourse and birth control
pills; an IUD (such as Mirena or ParaGard) or implant (such as Implanon or Nexplanon); or a shot (such as
Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse
(to prevent pregnancy, among students who were currently sexually active)

| 12.7 | 11.1 | 12.3 | 13.8 |
| :--- | :--- | :--- | :--- |

[^14]'Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^15]${ }^{8}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
'Based on t-test analysis, p < 0.05 .
${ }^{8}$ Overweight and obese prevalence estimates for 1999 differ slightly from previously published results because different BMI cut points were used in 1999 than in subsequent years. To make these prevalence estimates comparable, the 1999 prevalence estimates were recalculated using the updated BMI cut points. In addition, beginning in 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
${ }^{\text {II }}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^16]
# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^17]${ }^{\text {s}}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^18]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

Carroll County
Trend Analysis Report


[^19]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^20]
## Maryland High School Survey

## Carroll County

Trend Analysis Report

| Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Physical Activity |

[^21]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^22]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^23]Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{\text {s}}$ Not enough years of data to calculate.

## 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report

| Total <br> Other |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 7}$ |

[^24]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^25]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^26]'Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^27]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^28]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, p < 0.05 .
${ }^{\text {s}}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^29]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^30]${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^31]
## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^32]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^33]${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| Male <br> Tobacco Use |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 9}$ | $\mathbf{2 0 1 1}$ | $\mathbf{2 0 1 3}$ |

[^34]${ }^{\S}$ Not enough years of data to calculate.

```
2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
 Maryland High School Survey
 Carroll County
 Trend Analysis Report
```



[^35]${ }^{\S}$ Not enough years of data to calculate

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^36]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^37]Based on t-test analysis, p < 0.05 .
${ }^{8}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
'Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^38]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^39]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^40]
## Maryland High School Survey

## Carroll County

Trend Analysis Report

## Male <br> Sexual Behaviors

| 1991 | 1993 | 1995 | 1997 | 1999 | 2001 | 2003 | 2005 | 2007 | 2009 | 2011 | 2013 | 2014 | 2016 | 2018 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

QNSHPARG: Percentage of students who used a shot (such as Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse (to prevent pregnancy, among students who were currently sexually active))
$3.1 \quad 3.0 \quad 1.2 \quad 2.6$

No linear change
Not available ${ }^{\S}$
No change

QNOTHHPL: Percentage of students who used birth control pills; an IUD (such as Mirena or ParaGard) or implant (such as Implanon or Nexplanon); or a shot (such as Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse (to prevent pregnancy, among students who were currently sexually active)

| 26.1 | 33.4 | 28.5 | 36.3 |
| :--- | :--- | :--- | :--- |

No linear change
Not available
No change

QNDUALBC: Percentage of students who used both a condom during last sexual intercourse and birth control pills; an IUD (such as Mirena or ParaGard) or implant (such as Implanon or Nexplanon); or a shot (such as
Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse (to prevent pregnancy, among students who were currently sexually active)

| 12.5 | 10.6 | 12.0 | 12.2 |
| :--- | :--- | :--- | :--- |

No linear change
Not available
No change

[^41]Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{8}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^42]${ }^{8}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
'Based on t-test analysis, p < 0.05 .
\$Overweight and obese prevalence estimates for 1999 differ slightly from previously published results because different BMI cut points were used in 1999 than in subsequent years. To make these prevalence estimates comparable, the 1999 prevalence estimates were recalculated using the updated BMI cut points. In addition, beginning in 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
${ }^{\text {II }}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| Male |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Health Risk Behavior and Percentages |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Linear Change* | Quadratic Change* | Change from 2016-2018 |
| 199 | 1993 | 1995 | 1997 | 1999 | 2001 | 2003 | 2005 | 2007 | 2009 | 2011 | 2013 | 2014 | 2016 | 2018 |  |  |  |
| QN70: Percentage of students who did not eat fruit (one or more times during the 7 days before the survey) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 16.2 | 13.0 | 14.5 | 13.9 | No linear change | Not available ${ }^{\text {§ }}$ | No change |
| QNFR0: Percentage of students who did not eat fruit or drink $100 \%$ fruit juices (such as orange juice, apple juice, or grape juice, during the 7 days before the survey) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 8.5 | 7.5 | 9.2 | 9.0 | No linear change | Not available | No change |
| QNFR1: Percentage of students who ate fruit or drank $100 \%$ fruit juices one or more times per day (such as orange juice, apple juice, or grape juice, during the 7 days before the survey) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 58.3 | 56.1 | 54.3 | 54.4 | No linear change | Not available | No change |

[^43]${ }^{8}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^44]'Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^45]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^46]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^47]${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^48]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^49]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^50]${ }^{8}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^51]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^52]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^53]'Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^54]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^55]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, p < 0.05 .
${ }^{\text {s}}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^56]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

## Female <br> Injury and Violence

Health Risk Behavior and Percentages
Linear Change
Quadratic Change*
Change from 2016-2018 ${ }^{\dagger}$

| 1991 | 1993 | 1995 | 1997 | 1999 | 2001 | 2003 | 2005 | 2007 | 2009 | 2011 | 2013 | 2014 | 2016 | 2018 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

QN13: Percentage of students who carried a weapon on school property (such as a gun, knife, or club, on at least 1
day during the 30 days before the survey)

| 2.3 | 1.3 | 3.6 | 1.4 | No linear change | Not available | Decreased |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

QN14: Percentage of students who carried a gun (not counting the days when they carried a gun only for hunting or for a sport such as target shooting, on at least 1 day during the 12 months before the survey)
1.1 Decreased, 2016-2018

Not available
No change

QN16: Percentage of students who were threatened or injured with a weapon on school property (such as a gun, knife, or club, one or more times during the 12 months before the survey)

| 7.1 | 3.5 | 4.1 | 6.9 | No linear change | Not available | Increased |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^57]
## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^58]
## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^59]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^60]${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| Female <br> Tobacco Use |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 9}$ |  |

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^61]${ }^{\S}$ Not enough years of data to calculate.

```
2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
 Maryland High School Survey
 Carroll County
 Trend Analysis Report
```



[^62]${ }^{\S}$ Not enough years of data to calculate

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^63]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| Female <br> Alcohol and Other Drug Use |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{lllllllllll}1991 & 1993 & 1995 & 1997 & 1999 & 2001 & 2003 & 2005 & 2007 & 2009 & 2011\end{array}$ | 2014 | 2016 | 2018 |  |  |  |
| QN45: Percentage of students who ever used marijuana (one or more times during their life) |  |  |  |  |  |  |
| 27.4 | 28.0 | 30.2 | 27.1 | No linear change | Not available ${ }^{\text {® }}$ | No change |
| QN46: Percentage of students who tried marijuana for the first time before age 13 years |  |  |  |  |  |  |
| 4.4 | 3.4 | 3.7 | 4.0 | No linear change | Not available | No change |
| QN47: Percentage of students who currently used marijuana (one or more times during the 30 days before the survey) |  |  |  |  |  |  |
| 16.6 | 16.3 | 18.2 | 16.3 | No linear change | Not available | No change |
| QN48: Percentage of students who ever used synthetic marijuana (one or more times during their life) |  |  |  |  |  |  |
|  | 8.5 | 7.1 | 4.3 | Decreased, 2014-2018 | Not available | Decreased |

[^64]${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^65]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^66]
# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^67]${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^68]
## Maryland High School Survey

## Carroll County

Trend Analysis Report

## Female

## Sexual Behaviors

| 1991 | 1993 | 1995 | 1997 | 1999 | 2001 | 2003 | 2005 | 2007 | 2009 | 2011 | 2013 | 2014 | 2016 | 2018 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

QNSHPARG: Percentage of students who used a shot (such as Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse (to prevent pregnancy, among students who were currently sexually active))

| 2.9 | 3.7 | 2.2 | 2.1 |
| :--- | :--- | :--- | :--- |

No linear change
Not available ${ }^{\S}$
No change

QNOTHHPL: Percentage of students who used birth control pills; an IUD (such as Mirena or ParaGard) or
implant (such as Implanon or Nexplanon); or a shot (such as Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse (to prevent pregnancy, among students who were currently sexually active)

QNDUALBC: Percentage of students who used both a condom during last sexual intercourse and birth control
pills; an IUD (such as Mirena or ParaGard) or implant (such as Implanon or Nexplanon); or a shot (such as
Depo-Provera), patch (such as OrthoEvra), or birth control ring (such as NuvaRing) before last sexual intercourse (to prevent pregnancy, among students who were currently sexually active)

[^69]'Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^70]${ }^{8}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
'Based on t-test analysis, p < 0.05 .
${ }^{8}$ Overweight and obese prevalence estimates for 1999 differ slightly from previously published results because different BMI cut points were used in 1999 than in subsequent years. To make these prevalence estimates comparable, the 1999 prevalence estimates were recalculated using the updated BMI cut points. In addition, beginning in 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
${ }^{\text {II }}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^71]
# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^72]${ }^{\text {§ }}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^73]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

Carroll County
Trend Analysis Report


[^74]${ }^{8}$ Not enough years of data to calculate.

# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^75]
## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^76]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^77]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^78]${ }^{8}$ Not enough years of data to calculate.

## 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report



[^79]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^80]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^81]'Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^82]${ }^{\S}$ Not enough years of data to calculate.

# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 

| Female <br> Site-Added |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 9}$ | $\mathbf{2 0 1 1}$ | $\mathbf{2 0 1 3}$ |  |

[^83]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, p < 0.05 .
${ }^{8}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^84]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^85]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^86]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Non-Hispanic.
Non-Hispanic.
${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Non-Hispanic.
Non-Hispanic.
${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^87]Non-Hispanic.
${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^88]
## 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report



[^89]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^90]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| White* <br> Alcohol and Other Drug Use |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{lllllllllll}1991 & 1993 & 1995 & 1997 & 1999 & 2001 & 2003 & 2005 & 2007 & 2009 & 2011\end{array}$ | 2014 | 2016 | 2018 |  |  |  |
| QN45: Percentage of students who ever used marijuana (one or more times during their life) |  |  |  |  |  |  |
| 28.2 | 26.7 | 28.4 | 26.2 | No linear change | Not available ${ }^{\text {dr }}$ | No change |
| QN46: Percentage of students who tried marijuana for the first time before age 13 years |  |  |  |  |  |  |
| 4.8 | 3.8 | 4.3 | 3.8 | No linear change | Not available | No change |
| QN47: Percentage of students who currently used marijuana (one or more times during the 30 days before the survey) |  |  |  |  |  |  |
| 17.5 | 16.0 | 17.9 | 16.5 | No linear change | Not available | No change |
| QN48: Percentage of students who ever used synthetic marijuana (one or more times during their life) |  |  |  |  |  |  |
|  | 8.9 | 5.9 | 4.0 | Decreased, 2014-2018 | Not available | Decreased |

[^91]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| White* <br> Alcohol and Other Drug Use |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

*Non-Hispanic.
'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^92]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^93]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^94]'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^95]
# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^96]
## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^97]
# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^98]
# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^99]
# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^100]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


QNVEG2: Percentage of students who ate vegetables two or more times per day (green salad, potatoes [excluding
French fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey)

| 27.9 | 25.9 | 24.3 | 21.6 | Decreased, 2013-2018 | Not availablefl |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

QNVEG3: Percentage of students who ate vegetables three or more times per day (green salad, potatoes
[excluding French fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey)

| 12.3 | 10.7 | 10.5 | 8.8 | Decreased, 2013-2018 | Not available |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

QN75: Percentage of students who did not drink a can, bottle, or glass of soda or pop (such as Coke, Pepsi, or
Sprite, not counting diet soda or diet pop, during the 7 days before the survey)

[^101]
# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 

White*
Weight Management and Dietary Behaviors
Health Risk Behavior and Percentages $\quad$ Linear Change ${ }^{\dagger} \quad$ Quadratic Change ${ }^{\dagger}$ Change from 2016-2018 ${ }^{8}$
$\begin{array}{lllllllllllllll}1991 & 1993 & 1995 & 1997 & 1999 & 2001 & 2003 & 2005 & 2007 & 2009 & 2011 & 2013 & 2014 & 2016 & 2018\end{array}$

QNSODA1: Percentage of students who drank a can, bottle, or glass of soda or pop one or more times per day (such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey)

QNSODA2: Percentage of students who drank a can, bottle, or glass of soda or pop two or more times per day
(such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey)

Non-Hispanic.
${ }^{\text {§ }}$ Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^102]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^103]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey

## Carroll County

Trend Analysis Report

*Non-Hispanic.
'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| White* <br> Other |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 9}$ |

*Non-Hispanic.
'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^104]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Non-Hispanic.
Non-Hispanic.
${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
${ }^{1}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report


[^105]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^106]
## 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report



[^107]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^108]
## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^109]${ }^{\S}$ Not enough years of data to calculate.

## 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report



[^110]${ }^{8}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^111]
## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| Hispanic <br> Tobacco Use |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 9}$ |

[^112]${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^113]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report

| Hispanic Alcohol and Other Drug Use |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{lllllllllll}1991 & 1993 & 1995 & 1997 & 1999 & 2001 & 2003 & 2005 & 2007 & 2009 & 2011\end{array}$ | 2014 | 2016 | 2018 |  |  |  |
| QN45: Percentage of students who ever used marijuana (one or more times during their life) |  |  |  |  |  |  |
| 37.3 | 32.3 | 29.1 | 34.5 | No linear change | Not available ${ }^{\text {§ }}$ | No change |
| QN46: Percentage of students who tried marijuana for the first time before age 13 years |  |  |  |  |  |  |
| 17.1 | 9.9 | 9.9 | 12.7 | No linear change | Not available | No change |
| QN47: Percentage of students who currently used marijuana (one or more times during the 30 days before the survey) |  |  |  |  |  |  |
| 21.4 | 19.8 | 19.8 | 24.7 | No linear change | Not available | No change |
| QN48: Percentage of students who ever used synthetic marijuana (one or more times during their life) |  |  |  |  |  |  |
|  | 15.0 | 7.8 | 12.7 | No linear change | Not available | No change |

[^114]Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{\S}$ Not enough years of data to calculate.

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, $\mathrm{p}<0.05$.
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^115]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^116]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

```
2018 YOUTH RISK BEHAVIOR SURVEY RESULTS
Maryland High School Survey
Carroll County
Trend Analysis Report
```



[^117]${ }^{\S}$ Not enough years of data to calculate

## Maryland High School Survey

## Carroll County

Trend Analysis Report

*Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
Based on t-test analysis, $\mathrm{p}<0.05$.
\$Overweight and obese prevalence estimates for 1999 differ slightly from previously published results because different BMI cut points were used in 1999 than in subsequent years. To make these prevalence estimates comparable, the 1999 prevalence estimates were recalculated using the updated BMI cut points. In addition, beginning in 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
${ }^{\text {II }}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^118]${ }^{\S}$ Not enough years of data to calculate.

# 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report 



[^119]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^120]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^121]${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^122]
## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^123]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^124]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^125]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

## 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report



[^126]2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^127]Based on t-test analysis, p < 0.05 .
${ }^{\S}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^128]${ }^{\text {§}}$ Not enough years of data to calculate.

2018 YOUTH RISK BEHAVIOR SURVEY RESULTS

## Maryland High School Survey

## Carroll County

Trend Analysis Report


[^129]${ }^{\S}$ Not enough years of data to calculate.

## 2018 YOUTH RISK BEHAVIOR SURVEY RESULTS <br> Maryland High School Survey <br> Carroll County <br> Trend Analysis Report



[^130]${ }^{8}$ Not enough years of data to calculate.


[^0]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^1]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    §Not enough years of data to calculate.

[^2]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^3]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^4]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p<0.05
    Based on t-test analysis, p < 0.05 .

[^5]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^6]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^7]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^8]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^9]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^10]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^11]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{8}$ Not enough years of data to calculate.

[^12]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^13]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^14]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^15]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^16]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    §Not enough years of data to calculate.

[^17]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^18]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    'Based on t-test analysis, p < 0.05 .
    ${ }^{\text {s}}$ Not enough years of data to calculate.

[^19]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^20]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\text {s}}$ Not enough years of data to calculate.

[^21]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^22]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^23]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^24]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{8}$ Not enough years of data to calculate.

[^25]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^26]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^27]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^28]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^29]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^30]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^31]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    'Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^32]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^33]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^34]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    'Based on t-test analysis, p < 0.05 .

[^35]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p<0.05
    Based on t-test analysis, p < 0.05 .

[^36]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^37]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^38]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^39]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^40]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^41]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^42]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^43]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^44]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^45]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^46]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^47]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^48]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^49]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^50]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^51]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^52]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^53]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^54]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^55]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^56]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^57]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$
    'Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^58]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^59]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^60]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p<0.05.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^61]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    'Based on t-test analysis, p < 0.05 .

[^62]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p<0.05
    Based on t-test analysis, p < 0.05 .

[^63]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^64]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^65]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^66]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^67]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^68]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^69]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^70]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^71]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^72]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^73]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^74]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^75]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p<0.05
    Based on t-test analysis, p < 0.05 .
    ${ }^{8}$ Not enough years of data to calculate.

[^76]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^77]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^78]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^79]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$
    Based on t-test analysis, p < 0.05 .
    ${ }^{8}$ Not enough years of data to calculate.

[^80]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^81]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^82]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^83]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$
    Based on t-test analysis, p < 0.05 .
    ${ }^{8}$ Not enough years of data to calculate.

[^84]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    ${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^85]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    ${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^86]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    ${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^87]:    *Non-Hispanic.

[^88]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^89]:    *Non-Hispanic.
    Non-Hispanic.
    
    ${ }^{11}$ Not enough years of data to calculate.

[^90]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    ${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^91]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\text {§ }}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^92]:    *Non-Hispanic.
    Non-Hispanic.
    §Based on t-test analysis, p < 0.05 .
    ${ }^{11}$ Not enough years of data to calculate.

[^93]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^94]:    *Non-Hispanic.

[^95]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    ${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^96]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$
    
    ${ }^{1}$ Not enough years of data to calculate.

[^97]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p < 0.05 .
    ${ }^{\S}$ Based on t-test analysis, p < 0.05 .
    "Overweight and obese prevalence estimates for 1999 differ slightly from previously published results because different BMI cut points were used in 1999 than in subsequent years. To make these prevalence estimates comparable, the 1999 prevalence estimates were recalculated using the updated BMI cut points. In addition, beginning in 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
    ${ }^{* *}$ Not enough years of data to calculate.

[^98]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\text {§ }}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^99]:    *Non-Hispanic.
    Non-Hispanic.
    §Based on t-test analysis, p < 0.05 .
    ${ }^{1}$ Not enough years of data to calculate.

[^100]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^101]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\text {§ Based on }} \mathrm{t}$-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^102]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^103]:    *Non-Hispanic.
    'Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    ${ }^{\text {§ }}$ Based on t -test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^104]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\text {§ }}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^105]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\S}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{1}$ Not enough years of data to calculate.

[^106]:    *Non-Hispanic.
    Non-Hispanic.
    ${ }^{\text {§ }}$ Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\text {Il }}$ Not enough years of data to calculate.

[^107]:    *Non-Hispanic.
    Nased on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p < 0.05
    ${ }^{8}$ Based on t -test analysis, $\mathrm{p}<0.05$.
    ${ }^{11}$ Not enough years of data to calculate.

[^108]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^109]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^110]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^111]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^112]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^113]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^114]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^115]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^116]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^117]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p<0.05
    Based on t-test analysis, p < 0.05 .

[^118]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^119]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, p < 0.05
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^120]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{\S}$ Not enough years of data to calculate.

[^121]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^122]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.
    ${ }^{8}$ Not enough years of data to calculate.

[^123]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^124]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    'Based on t-test analysis, p < 0.05 .
    ${ }^{\S}$ Not enough years of data to calculate.

[^125]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^126]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$
    Based on t-test analysis, p < 0.05 .
    ${ }^{8}$ Not enough years of data to calculate.

[^127]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.

[^128]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, p < 0.05 .

[^129]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$.
    Based on t-test analysis, $\mathrm{p}<0.05$.

[^130]:    *Based on trend analyses using a logistic regression model controlling for sex, race/ethnicity, and grade, $\mathrm{p}<0.05$
    Based on t-test analysis, p < 0.05 .

