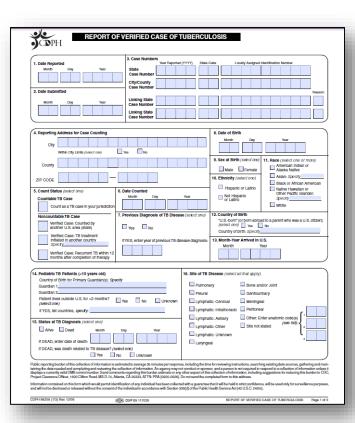

USE OF NUCLEIC ACID AMPLIFICATION TESTS FOR DETERMINING RISK OF TUBERCULOSIS TRANSMISSION

Yingda L. Xie¹, Wendy A. Cronin², Jonathan E. Golub³, Lisa Paulos², Richard Oatis², Jafar H. Razeq², Silvia Cohn³, Ray Y. Chen¹, Clifton E Barry¹, and Susan E. Dorman³

- 1. Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
 - 2. Maryland Dept. of Health and Mental Hygiene, Baltimore, Maryland, USA
 - 3. Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Background

- Public health management of TB patients based heavily on sputum smear microscopy
- However, smear-negative patients contribute considerably to TB transmission
 - Behr et al, Lancet 1999;353:444
- Emergence of nucleic acid amplification tests (NAATs) more sensitive for detecting TB
 - Enhanced Amplified Mycobacterium Tuberculosis Direct Test ('MTD', Gen-Probe, CA)
 - Xpert MTB/RIF (Cepheid, CA; FDA-cleared, being rolled out globally)



For pulmonary TB patients in the state of Maryland from Jan 2004 to Sept 2009 (when MTD and genotyping was routinely performed on TB isolates)...

We can compare the infective potential of sputum NAAT-negative vs. sputum NAAT-positive patients, using Mtb genotyping as a proxy for transmission

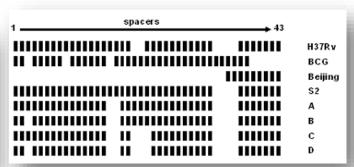
Source documents

1. RVCT

Descriptive:

Examines characteristics (homeless, HIV, imaging data, occupation, etc) of participants

2. Laboratory



MTD/Smear/Culture:

Dates when first specimen for culture/smear used to determine chronology

4. Contact Investigation Records

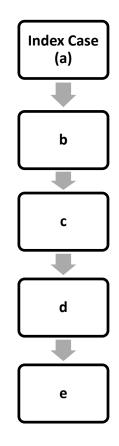
3. Genotyping

	MIRU locus name											
	02	04	10	16	20	23	24	26	27	31	39	40
No. of repeats	2	3	2	2	3	4	2	5	3	3	2	2

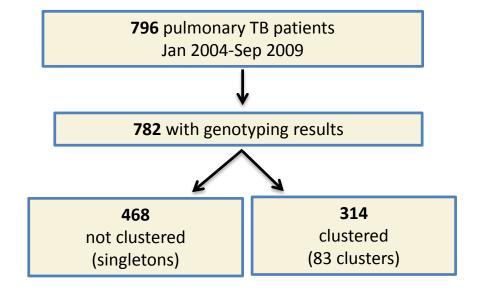
Epidemiologic Linking

To approximate transmission clusters (12-loci MIRU VNTR + spoligotyping)

Priority for Investigation	High/Med	Low
Number of Contacts	5	0
Number Evaluated	4	0
TB Disease	0	0
Window Treatment	0	0
Latent Infection	1	0
Candidates for TLTBI	1	0
Started Treatment	1	02


Design/Methods: Definitions

- NAAT negative: at least 2 neg NAAT (MTD) results at time of 1st culture-pos specimen (if any positive MTD = NAAT positive)
 - An MTD (-) result was repeated 94% of time, of which 83% remained MTD (-)
- Smear negative: at least 3 neg smear microscopy results at time of 1st culture positive specimen (if any positive smear= smear positive)


Design/Methods

Primary Analysis: Transmission approximated by genotypic links

- Cases with Mtb isolates having the same fingerprint (spoligo + MIRU 12-loci) assigned to clusters.
- Cases ordered chronologically by date of 1st culture-positive sputum.
- 3) Cluster categorized according to index case(1st case in the cluster)
- 4) Clusters excluded from respective analysis if index case smear or NAAT unknown

RESULTS:

NAAT NEG	NAAT POS	NAAT UNK		SM NEG	SM POS	SM UNK
N=39	N=418	N=325		N=167	N=483	N=132
39	42	49	Age	41	42	50
79%	71%	65%	Born outside USA	80%	70%	61%
5%	12%	12%	HIV pos	11%	11%	19%
15%	50%	14%	CXR cavitation	12%	55%	19%
13.5	2.3	13.4	Days to Rx start	15.7	2.2	10.2

RESULTS: Primary Analysis

	RR of starting a cluster	RR of transmitting as a cluster case	Interpretation
Behr et al, 1999 SMEAR (-) vs. (+)		0.22 (95% CI: 0.16-0.32)	SM(-) 78% less likely to transmit TB than SM(+)
SMEAR (-) vs. (+)	0.82 (95% CI: 0.49-1.42)	0.29 (95% CI: 0.25-0.41)	SM(-) 71% less likely to transmit TB than SM(+)

RESULTS: Primary Analysis

	RR of starting a cluster	RR of transmitting as a cluster case	Interpretation
Behr et al, 1999 SMEAR (-) vs. (+)		0.22 (95% CI: 0.16-0.32)	SM(-) 78% less likely to transmit TB than SM(+)
SMEAR (-) vs. (+)	0.82 (95% CI: 0.49-1.42)	0.29 (95% Cl: 0 .25-0.41)	SM(-) 71% less likely to transmit TB than SM(+)
NAAT (-) vs. (+)	0.40 (95% CI: 0.02-1.72)	0.17 (95% CI: 0 .01-0.06)	NAAT(-) 83% less likely to transmit TB than NAAT(+)
Among SM (-): NAAT (-) vs. (+)	0.67 (95% CI: 0.02-3.95)	0.50 (95% CI: 0.02-2.80)	NAAT(-)/SM(-) maybe less likely to transmit TB than NAAT(+)/SM(-)

Relative transmission risk for NAAT(-)/ NAAT(+) compared with that of SM(-)/SM(+) is 0.59

Revisiting our Definitions

- NAAT negative: at least 2 neg NAAT (MTD) results at time of 1st culture-pos specimen (if any positive MTD = NAAT positive)
- Smear negative: at least 3 neg smear microscopy results at time of 1st culture positive specimen (if any positive smear= smear positive)

NOW...

- ☐ As we found no cases of SMEAR(+)/NAAT (-), assume that SMEAR (+) implicates NAAT (+)
 - → 46 previously NAAT-unknown are now NAAT (+)

RESULTS: if SM(+) implies MTD(+)

		RR of starting a cluster	RR of transmitting as a cluster case	Interpretation
SMEAR (-) vs. (+)	0.82 (95% CI: 0.49-1.42)	0.29 (95% CI: 0.25-0.41)	SM(-) 71% less likely to transmit TB than SM(+)
NAAT ()	SM(+) ≠ NAAT (+)	0.40 (95% CI: 0.02-1.72)	0.17 (95% CI: 0.01-0.06)	NAAT(-) 83% less likely to transmit TB than NAAT(+)
NAAT (-) vs. (+)	SM(+) → NAAT(+)	0.39 (95% CI: 0.02-1.72)	0.13 (95% CI: 0.01-0.06)	NAAT(-) 87% less likely to transmit TB than NAAT(+)
Among	SM(+) ≠ NAAT (+)	0.67 (95% CI: 0.02-3.95)	0.50 (95% CI: 0.02-2.80)	NAAT(-)/SM(-) maybe less
SM(-): NAAT (-) vs (+)	SM(+) → NAAT(+)	0.72 (95% CI: 0.02-3.95)	0.54 (95% CI: 0.02-3.88)	likely to transmit TB than NAAT(+)/SM(-)

RESULTS: if SM(+) implies MTD(+)

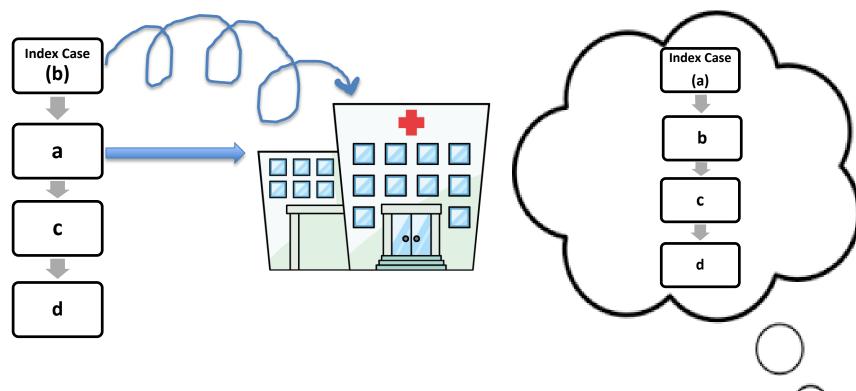
		RR of starting a cluster	RR of transmitting as a cluster case	Interpretation
SMEAR (-) vs. (+)	0.82 (95% CI: 0.49-1.42)	0.29 (95% Cl: 0.25-0.41)	SM(-) 71% less likely to transmit TB than SM(+)
NAAT (-)	SM(+) ≠ NAAT (+)	0.40 (95% CI: 0.02-1.72)	0.17 (95% CI: 0.01-0.06)	NAAT(-) 83% less likely to transmit TB than NAAT(+)
vs. (+)	SM(+) → NAAT(+)	0.39 (95% CI: 0.02-1.72)	0.13 (95% CI: 0 .01-0.06)	NAAT(-) 87% less likely to transmit TB than NAAT(+)
Among	SM(+) ≠ NAAT (+)	0.67 (95% CI: 0.02-3.95)	0.50 (95% CI: 0.02-2.80)	NAAT(-)/SM(-) maybe less
SM(-): NAAT (-) vs (+)	SM(+) → NAAT(+)	0.72 (95% CI: 0.02-3.95)	0.54 (95% CI: 0.02-3.88)	likely to transmit TB than NAAT(+)/SM(-)

Revisiting our Definitions

- \underline{NAAT} negative: at least **2** neg NAAT (MTD) results at time of 1st culture-pos specimen (if any positive MTD = NAAT positive)
- Smear negative: at least 3 neg smear microscopy results at time of 1st culture positive specimen (if any positive smear= smear positive)

NOW...

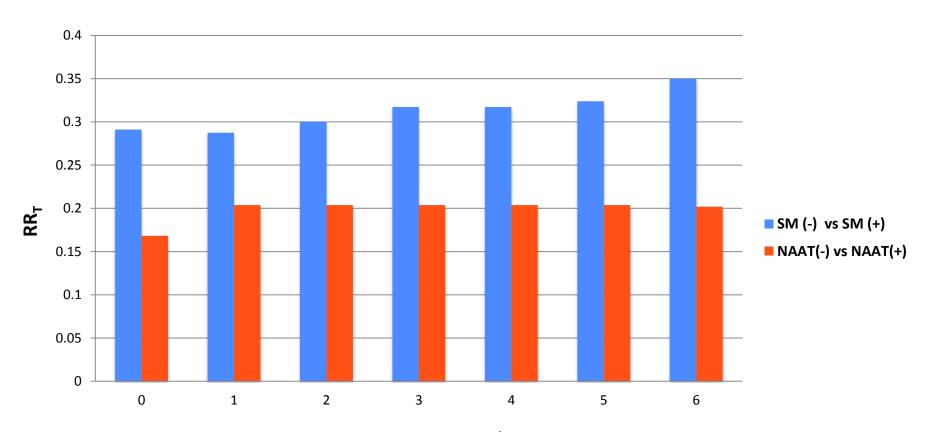
- ✓ As we found no cases of SMEAR(+)/NAAT (-), assume that SMEAR
 (+) implicates NAAT (+)
 - → 46 previously NAAT-unknown are now NAAT (+)
- ☐ Redefine NAAT negative to require only 1 MTD (-) result (on 1st culture-positive specimen)
 - → For this definition, can no longer assume SMEAR(+) implies NAAT (+)


RESULTS: Require only 1 NAAT (-) test

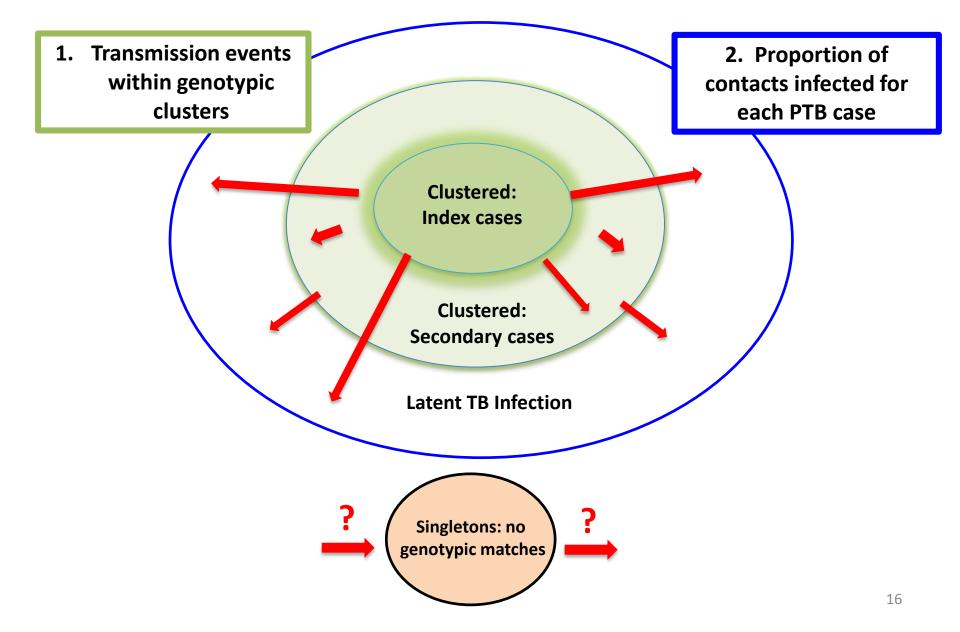
		RR of starting a cluster	RR of transmitting as a cluster case	Interpretation
SMEAR (-	·) vs. (+)	0.82 (95% CI: 0.49-1.42)	0.29 (95% CI: 0.25-0.41)	SM(-) 71% less likely to transmit TB than SM(+)
NAAT (-)	NAAT (-) x 2	0.40 (95% CI: 0.02-1.72)	0.17 (95% CI: 0.02-0.60)	NAAT(-)x2 83% less likely to transmit TB than NAAT(+)
vs. (+)	NAAT (-) x1	0.49 (95% CI: 0.13-1.24)	0.21 (95% CI:0.15-0.46)	NAAT(-) x1 79% less likely to transmit TB than NAAT(+) 12
Among SM (-):	NAAT (-) x 2	0.67 (95% CI: 0.02-3.95)	0.50 (95% CI: 0.02-2.80)	NAAT(-)/SM(-) maybe less likely
NAAT (-) vs. (+)	NAAT (-) x1	0.88 (95% CI: 0.02-3.95)	0.66 (95% CI:0.17-2.56)	to transmit TB than NAAT(+)/SM(-)

RESULTS: Require only 1 NAAT (-) test

		RR of starting a cluster	RR of transmitting as a cluster case	Interpretation
SMEAR (-	·) vs. (+)	0.82 (95% CI: 0.49-1.42)	0.29 (95% CI: 0 .25-0.41)	SM(-) 71% less likely to transmit TB than SM(+)
NAAT (-)	NAAT (-) x 2	0.40 (95% CI: 0.02-1.72)	0.17 (95% CI: 0.02-0.60)	NAAT(-)x2 83% less likely to transmit TB than NAAT(+)
vs. (+)	NAAT (-) x1	0.49 (95% CI: 0.13-1.24)	0.21 (95% CI:0.15-0.46)	NAAT(-) x1 79% less likely to transmit TB than NAAT(+)
Among SM (-):	NAAT (-) x 2	0.67 (95% CI: 0.02-3.95)	0.<mark>50</mark> (95% CI: 0.02-2.80)	NAAT(-)/SM(-) maybe less likely
NAAT (-) vs. (+)	NAAT (-) x1	0.88 (95% CI: 0.02-3.95)	0.66 (95% CI:0.17-2.56)	to transmit TB than NAAT(+)/SM(-)


Chronologic Misclassification Bias

2nd case in the cluster (b) really infected 1^{st} /index (a), but delayed seeking care \rightarrow


Misclassification of transmission source

Sensitivity Analysis: Relative transmission risk (RR_T) recalculated

Months between 1st and 2nd case

How to approximate transmission?

Design/Methods

Secondary Analyses: Transmission approximated by infected contacts

Using contact investigation data for each active case (available for study cases after 2007), we looked at proportion of contacts evaluated who were found to have a) active b) latent c) active or latent TB infection

Relative Risk of transmission (RR_T) calculated as:

NAAT (-) contacts infected/total # NAAT (-) contacts evaluated # NAAT (+) contacts infected/total # NAAT (+) contacts evaluated

^{**}Calculation of **RR**_T also performed based on smear status

Secondary Analysis: RR_T from Contact Investigation

	RR _T Active TB	RR _T Latent TB I	RR _T ALL
SM-/SM+	0.35 (95% CI 0.02-2.46)	1.43	1.41
NAAT (-) X1 vs. (+)	0.00 (95% CI 0.00-12.20)	1.19	1.15
NAAT (-) X2 vs. (+)	0.00 (95% CI 0.00-3.86)	1.42	1.38

Relative risk of active disease in contacts of Smear (-) vs Smear (+) in other developed countries:

Saskatchewan: 0.28 (Gryzbowski et al. Bull Int Union Tuberc 1975; 50: 90-106)

Spain: 0.47 (Vidal R et al, med clin barc 1997; 108: 361-365)

CONCLUSIONS

- 1. Transmission risk from sputum NAAT (-) pulmonary TB patients **substantially less (79% if 1 negative NAAT test, 83-87% if 2 negative NAAT tests)** than that from sputum NAAT (+) pulmonary TB patients.
- Relative order of transmission risk likely:
 smear(+)/ NAAT(+) > smear (-)/NAAT (+) > smear (-)/NAAT (-)
- 3. Transmission risk approximated from proportion of actively infected contacts may suggest similar findings but statistically inconclusive.
- 4. Limitations of this study include:
 - a) Potential bias due to geographic or temporal undersampling \rightarrow sens. analysis
 - b) Small number of NAAT (-) patients
- 5. Findings likely applicable to **GeneXpert MTB/RIF**, which has similar sensitivity as MTD for TB detection⁵ and has widely supplanted use of MTD in its global rollout.

NAATs may be valuable public health tools by refining our ability to identify the least transmissible pulmonary TB patients.

REFERENCES

- 1. Behr M, et al. Lancet 1999;353:444
- 2. Gryzbowski S, et al. Bull Int Union Tuberc 1975; 50: 90-106
- 3. Vidal R, et al. Med Clin Barc 1997; 108: 361-365
- 4. Coll PI, et al. Int J Tuberc Lung Dis. 2003 Sep;7(9):886-91.
- 5. Boehme CC, et al. N Engl J Med. 2010 Sep 9;363(11):1005-15.

Special Thanks

Project Mentor:

Susan Dorman, MD

JHU Professor of Medicine

NIH, TB Research Center:

Clifton Barry III, PhD Ray Y. Chen MDHMH, TB Control:

Wendy Cronin

Andrea Palmer

Lisa Paolos

Maryland Public Health TB Laboratory:

Rich Oatis

Jafar Razeq

JHU Bloomberg School of Public Health

Silvia Cohn

Jonathan Golub

