# Health and Disability Risks with Lifetime History of TBI



John D. Corrigan, PhD

Professor
Department of Physical Medicine and Rehabilitation

Director Ohio Brain Injury Program



| Lifetime History of TBI:                                          | Any TBI      | TBI with LOC | Mod/<br>Severe<br>TBI |
|-------------------------------------------------------------------|--------------|--------------|-----------------------|
| OEF/OIF veterans (Fortier, et al.) [including combat related]     | 32%<br>[67%] | 22%<br>[38%] | 4%                    |
| Prisoners (*Shrioma et al; ** Bogner & Corrigan)                  | 60%*         | 50%*         | 14%**                 |
| SUD treatment (Corrigan & Bogner)                                 | 65%          | 53%          | 17%                   |
| Psychiatric inpatients (Burg et al.)                              | 68%          | 36%          | 20%                   |
| Homeless (*Hwang et al.; **Bremner et al., Solliday-McRoy et al.) | 53%*         | 47%**        | 12%*                  |

## What About Prevalence of TBI in the General Population?

- Disability due to TBI
- Lifetime TBI as "exposure"
  - -Prevalence?
  - -Consequences?

# Prevalence of Disability Due to TBI



#### Prevalence of Disability Due to TBI

- Projected from 1 year outcomes following hospitalization
- Datasets did not include children
- Made assumptions about persistence of disability and mortality
- ✓ In 1996, based on Colorado data: 2.0%
- ✓ In 2005, based on South Carolina data: 1.1%

#### Survey Data & Disability Due to TBI

- Whiteneck et al.: if disability is not limited to TBIs requiring hospitalization, rate could be 3 x larger.
- Jourdan et al. from the French National Disability and Health Survey:

#### Survey Data & Disability Due to TBI

- Whiteneck et al.: if disability is not limited to TBIs requiring hospitalization, rate could be 3 x larger.
- Jourdan et al. from the French National Disability and Health Survey: 0.7%

### Summary: Prevalence of Disability Due to TBI

- Estimates have ranged from 0.7%–2.0%
- US studies likely underestimates due to:
  - Starting with disability 1 year after hospitalization
  - Having to make assumptions about permanence and mortality
  - Not including TBIs occurring in childhood
- What if the effect of the TBI is not apparent immediately but in time results in disability?

# Prevalence of "Exposure" to TBI

#### "Exposure" to TBI

The study of toxic exposures considers the nature of the relationship between exposure and effect.

If TBI was a chemical we would ask:

- what is the relationship between the dose of the exposure and the effect on the person?
- does a single exposure of any dose cause the effect?
- can there be cumulative effects of repeated exposures?
- how does development interact with both exposure and the manifestation of the effect?

#### Traumatic Brain Injury (TBI)

"...an insult to the brain caused by an external force that results in an altered state of consciousness."

#### Conceptualizing "Exposure" to TBI

- Has a person's head been exposed to sufficient forces to result in TBI?
- Has a person ever had altered consciousness due to external forces?—i.e., ever exposed to a TBI
- Has a person ever had a TBI of a certain magnitude of altered consciousness?—i.e., severity as dose

## Conceptualizing "Exposure" to TBI (continued)

- How many TBIs has a person had?—i.e., number as the source of cumulative effects
- What was the timing of those TBIs?—i.e., spacing as the source of cumulative effects
- How old was a person when TBI occurred? i.e., interaction with the stage of development

### What do we know about prevalence of exposure to TBI?

- Not enough!
- Research on exposure to *g* forces is marked by inconsistencies and would appear to be impractical for getting lifetime prevalence data.
- Research on TBI during one's lifetime has used self-report based on single item elicitation of "yes/no" using a variety of case definitions.
- Use of standardized instruments for elicitation has been limited, at least to date.

#### Prevalence in Single Item Surveys

- 10% (1998); 13% (1999) –New Hampshire BRFSS "ever diagnosed with a concussion or a brain injury that was the result of trauma or drowning?"
- 37%–2001 Colorado BRFSS "how many times have you ever been injured where you were knocked out or unconscious?"
- 9%—New Haven Connecticut "experienced a severe head injury that was associated with a LOC or confusion?"
- 17%–2011 Ontario survey "head injury that resulted in being unconscious (knocked out) for at least 5 minutes, or requiring a stay in the hospital for at least one night?"
- 6%–2 Australian cities "TBI in your lifetime that resulted in 15 minutes or longer LOC?"

#### Lifetime History of TBI in General Population Surveys using Standardized Instruments

Colorado: CDC funded survey of 2,701 adult, non-institutionalized residents of Colorado ≥ 18 years old. Conducted from 2008-2010 and weighted to 2010 census data. CATI of the OSU TBI Identification Method research version.

Ohio: State optional module included in 2014 BRFSS administered to 6,998 adult, non-institutionalized Ohioans ≥ 18 years old. Used adapted OSU TBI Identification Method.

#### Prevalence of TBI in the Adult, General Population

|                                            | Colorado | Ohio  |
|--------------------------------------------|----------|-------|
| % with Any TBI                             | 42.5%    | n/a   |
| % with Loss of Consciousness               | 24.4%    | 21.7% |
| % with Moderate or Severe TBI              | 6.0%     | 2.6%  |
| % with Loss of Consciousness before age 15 | 6.7%     | 9.1%  |
| % either LOC < 15 or mod/sev TBI           | 11.5%    | 10.8% |

#### Summary: Prevalence of TBI Exposures

- "Exposure" is a paradigm shift in previous approaches to prevalence
- Accounts for effects of TBI that are not immediate and continuous
- May be more important when considering the public health burden of TBI
- Do not know enough about prevalence of exposure
- What do we know about consequences of lifetime exposure?

# Consequences of Exposure to TBI

## Province of Ontario (Ilie et al. 2015a,b,c) Lifetime history of TBI with ≥ 5 minutes loss of consciousness or hospital stay

- More likely to smoke cigarettes (AOR=2.15) use cannabis (AOR=2.80) and use nonprescription opioids (AOR=2.90)
- More likely to be experiencing psychological distress (AOR=1.97)
- More likely to screen + for ADHD (AOR=2.49) or have been diagnosed with ADHD (AOR=2.64)
- More likely to have had a motor vehicle crash with injuries (AOR=1.79)
- More likely to have engaged in serious driver aggression during past 12 months (AOR=4.39)
  - \*Adjusted for sex, age and education













#### Developmental Contributions

Early childhood TBI, even if mild, may pre-dispose to later behavioral problems.



#### Natural History of TBI to Age 25

(McKinlay et al., 2008)

- 1,265 children born in 1977 in Christchurch, New Zealand and followed to age 25
- Annual assessments from 4 months to age 16, then at 18, 21 and 25
- Verified through medical records all TBI's diagnosed by a professional (MD office, ED, hospitalized)
- 79.3% successfully followed through age 25

#### Early Injury as Predictor of Later Problems

Compared to no TBI and outpatient only, by early adolescence (10-13 y.o.) those <u>hospitalized with a mild</u> TBI before age 6 were:

- More hyperactive and inattentive as rated by parent and teacher
- More likely dx'd with ADHD, conduct disorder or oppositional defiant behavior
- More likely to have substance abuse problems
- More likely to demonstrate mood disorders

### Early Injury as Predictor of Later Problems (continued)

By late adolescence to early adulthood (16-25 years old):

- Those <u>hospitalized with 1st TBI before age 6</u>,
   3 times more likely to have a diagnosis of either alcohol or drug dependence by age 25
- Those <u>hospitalized with 1st TBI 16-21</u>,
  3 times more likely to be diagnosed with drug dependence
- TBI highly associated with likelihood of arrest



#### **Swedish Population Registry**

- 1.1 million Swedish citizens born between 1973 and 1985 and followed to 2013
- 9.1% had a medically treated TBI by age 25
- Compared outcomes to general population, siblings without TBI and persons with orthopedic injuries
- Looked at likelihood of the following outcomes:
  - psychiatric treatment
- disability from work
- psychiatric hospitalization
- receiving welfare benefits
- premature mortality
- low educational attainment

#### Adjusted Odds of Negative Consequences Compared to Uninjured Siblings

|                             | Any TBI | Mild TBI | Mod/Sev<br>TBI | Recurrent<br>TBI |
|-----------------------------|---------|----------|----------------|------------------|
| Disability pension          | 1.49    | 1.36     | 2.06           | 2.22             |
| Psychiatric visit           | 1.31    | 1.31     | 1.34           | 1.24             |
| Psychiatric hospitalization | 1.57    | 1.51     | 1.75           | 1.53             |
| Premature mortality         | 1.40    | 1.26     | 1.92           | 1.59             |
| Low education               | 1.28    | 1.25     | 1.37           | 1.28             |
| Welfare recipiency          | 1.19    | 1.18     | 1.21           | 1.13             |

## Adj. Odds of Negative Consequences x Age at 1st Injury

|                             | Ages<br>0-4 | Ages<br>5-9 | Ages<br>10-14 | Ages 15-19 | Ages 20-24 |
|-----------------------------|-------------|-------------|---------------|------------|------------|
| Disability pension          | 1.39        | 1.37        | 1.58          | 1.85       | 1.97       |
| Psychiatric visit           | 1.18        | 1.19        | 1.40          | 1.60       | 1.78       |
| Psychiatric hospitalization | 1.24        | 1.33        | 1.68          | 2.04       | 2.47       |
| Premature mortality         | 1.28        | 1.40        | 1.45          | 1.76       | 2.25       |
| Low education               | 1.32        | 1.24        | 1.43          | 1.73       | 1.67       |
| Welfare recipiency          | 1.33        | 1.35        | 1.40          | 1.56       | 1.70       |

### Adj. Odds Negative Consequences x Age 1st Injury Compared to Uninjured Siblings

|                             | Ages<br>0-4 | Ages<br>5-9 | Ages<br>10-14 | Ages<br>15-19 | Ages 20-24 |
|-----------------------------|-------------|-------------|---------------|---------------|------------|
| Disability pension          |             | 1.29        | 1.28          | 1.49          | 1.73       |
| Psychiatric visit           |             | 1.11        | 1.28          | 1.24          | 1.53       |
| Psychiatric hospitalization |             |             | 1.42          | 1.62          | 1.92       |
| Premature mortality         |             |             |               | 1.24          | 1.59       |
| Low education               |             | 1.10        | 1.22          | 1.41          | 1.34       |
| Welfare recipiency          |             |             | 1.19          | 1.20          | 1.24       |

Pathophysiology

#### The "Fingerprint" of TBI

Frontal areas of the brain, including the frontal lobes, are the most likely to be injured as a result of TBI, regardless the point of impact to the head









#### **Summary**

- Significant associations between lifetime history of TBI and health and social consequences supports an "exposure" approach to examining the public health burden of TBI.
- There is much to learn about dose, cumulative and developmental effects.
- Research on how to measure exposure will be needed.
- BRFSS data could contribute to a body of research that will advance our knowledge of TBI exposure.

### THANK YOU

John D. Corrigan, PhD Ohio State University corrigan.1@osu.edu