Spatial Analysis of Lyme Disease in Howard County, Maryland

Margaret K. Doll
PHASE Student
05.16.08
Study Objective

- Spatial analysis of Lyme disease incidence in the years 2005, 2006 and 2007 in Howard County, Maryland

- Goals:
 - Focus disease prevention, control and treatment methods
 - Enhance understanding of geographic disease patterns in the mid-Atlantic region of the United States

- Methods:
 - Use of geographic information systems (GIS) and SaTScan statistical program to detect clusters of Lyme disease incidence by case residence

- Final Products:
 - Map of Lyme disease risk
 - Policy suggestions for prevention
What is Lyme Disease?

- A vector-borne illness caused by the bacterium, *Borrelia burgdorferi*
What is Lyme Disease?

- Transmitted by the deer tick, *Ixodes scapularis*
 - Tick nymphs are the primary vectors involved in transmission¹

I. scapularis nymph

¹ Hayes & Piesman, 2003
What is Lyme Disease?

- White footed mouse serves as reservoir for the bacteria
- Larger vertebrates, such as deer, serve as hosts for adult ticks
- Vector, reservoir and host ecology are important determinants of disease dynamics
Public Health Impact

- 2003-2005: 20,000 cases annually\(^1\)
- 90% of cases successfully managed\(^2,3\)
 - However, 10% cases may lead to:
 - chronic neural, cardiovascular and musculoskeletal disorders
- Incidence highest among children aged 5 to 9 and adults aged 45 to 55 years\(^4\)

\(^1\)CDC, 2007.
\(^3\)Shadick et al., 2001.
\(^4\)Poland, 2001.
Burden of Disease

- Maryland is among 10 states with endemic Lyme disease\(^1\)
- 2005: Howard County had the 2\(^{nd}\) highest number of cases of Lyme disease in Maryland\(^2\)
- Lyme disease in Howard County has doubled from 2001 to 2005\(^2\)

1 CDC, 2007.
Spatial Epidemiology

- As a zoonotic illness, the environment is an integral part of disease
 - Called “spatial epidemiology”

- Spatial clustering of disease is a common feature of Lyme disease in endemic areas in the Northeast\(^1,\)\(^2\)

- Spatial epidemiology of disease is an important factor to consider in relation to disease surveillance, research and prevention\(^3\)

\(^1\)Armstrong et al., 2001.
\(^2\)Steere et al., 2004
\(^3\)Kitron, 1998.
Characterizing Spatial Epidemiology

- Geographic Residence of Cases
 - Residence has been linked to risk of disease\(^2,3\)
 - 87% of cases identified residence as probable source of exposure\(^4\)

- Tick density\(^1\)
 - Unreliable: tick aggregation
 - Difficult to survey
 - Expensive

\(^1\) Poland, 2001.
\(^2\) Maupin et al., 1991
\(^3\) Cromley et al., 1998
\(^4\) Glass et al., 1995.
Methods

- Used address data from confirmed cases of Lyme disease occurring in Howard County during the years 2005, 2006, and 2007
 - Extracted from MERSS and NEDSS databases

- Cluster detection using geographic information systems (GIS) in conjunction with SaTScan statistical software
Results

- 556 confirmed cases of Lyme disease
 - Age of cases ranged 1 to 83 years
 - Bimodal Distribution:
 - Aged 5 to 14 years
 - Aged 45 to 55 years
 - 66% male and 44% female
- Successfully geocoded 503 records
 - Residences of 23 cases outside of county
 - Remaining 30 cases:
 - 8 missing addresses
 - 8 post office box addresses
 - 1 rural route address
 - 13 incorrect addresses
Significant* Clusters and Sub-Clusters of Lyme Disease Incidence in Howard County, MD During the Years 2005, 2006, and 2007 Controlling for Cluster Population Size

*Based on alpha <0.05

Howard County, MD

Maximum Cluster Size: 50% of Population at Risk

Legend

- Red: Cluster 1; p-value 0.001
- Orange: Sub-Cluster 1; p-value 0.001
- Dark Brown: Sub-Cluster 2; p-value 0.001
- Light Brown: Sub-Cluster 3; p-value 0.001
- Yellow: Sub-Cluster 4; p-value 0.016
- Green: Sub-Cluster 5; p-value 0.016
- White: 2000 Census Tract Boundaries
Predicted Incidence and Corresponding Standard Errors of Lyme Disease Per 10,000 Persons in Howard County, Maryland Over a 3-Year Period Using Ordinary Kriging
Discussion

- Confirms geographic focal point of Lyme disease similar to northeastern United States

- Large, single cluster may be indicative of spatial homogeneity and endemicity of disease in Howard County

\(^1\text{Maupin et al., 1991.} \quad \^2\text{Cromley et al., 1998.}
Limitations

- Passive surveillance
 - Underreporting of Lyme disease\(^1,2\)
 - Overdiagnosis of Lyme disease\(^3,4\)

- Assume residence is a surrogate for Lyme disease exposure

- Aggregation of data: modifiable areal unit problem (MAUP)\(^5\)

- Ecologic Fallacy

\(^1\)Meek et al., 1996.
\(^2\)Naleway et al., 2002.
\(^3\)Qureshi et al., 2002.
\(^4\)Steere et al., 1993.
\(^5\)Openshaw & Taylor, 1981.
Public Health Significance

- Endemicity findings suggest need for county-wide prevention initiative
- Prevention program should focus on education, including: 1,2,3
 - Outdoor precautions
 - Tick checking and removal
 - Risk of disease reduced if tick removed within 36 hours
 - Identify primary symptom of disease erythema migrans
 - Reduce tick habitats at place of residence

1 DHMH, 2007.
2 Hunterdon Health Department, 2007.
3 Poland, 2001.
Acknowledgements

- Primary Advisor: Dr. Saad B. Omer
- PHASE Preceptor: Elizabeth Bohle
- PHASE Directors: Dr. Michel Ibrahim and Dipti Shah
Questions?

Protect Yourself Against Lyme Disease in Spring, Summer, and Fall

1. Walk in the middle of trails, away from tall grass and bushes.

2. Wear a long-sleeved shirt.

3. Wear white or light-colored clothing to make it easier to see ticks.

4. Wear a hat.

5. Spray tick repellent on clothes and shoes before entering woods.

6. Wear long pants tucked into high socks.

7. Wear shoes—no bare feet or sandals.
Works Cited

